1. वास्तविक संख्याएँ
प्रश्नावली 1.2
प्रश्नावली 1.2
Q1. निम्नलिखित संख्याओं को अभाज्य गुणनखंड के रूप में व्यक्त कीजिये :
(i) 140
हल:
140 का अभाज्य गुणनखंड
= 22 × 5 × 7
(ii) 156
हल:
156 का अभाज्य गुणनखंड
= 22 × 3 × 13
(iii) 3825
हल:
3825 का अभाज्य गुणनखंड
= 32 × 52 × 17
(iv) 5005
हल:
5005 का अभाज्य गुणनखंड
= 5 × 7 × 11 × 13
(v) 7429
हल:
7429 का अभाज्य गुणनखंड = 17 x 19 x 23
Q2. पूर्णांकों के निम्नलिखित युग्मों के LCM and HCF ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = LCM × HCF है|
(i) 26 and 91
हल:
26 = 2 × 13
91 = 7 × 13
सार्व गुणनखंड = 13
∴ HCF = 13
LCM = 2 × 7 × 13 = 182
अब, जाँच,
दो संख्याओं का गुणनफल = LCM × HCF
N1 × N2 = LCM × HCF
26 × 91 = 13 × 182
2366 = 2366
इति सिद्धम |
(ii) 510 and 92
हल:
510 = 2 × 3 × 5 × 17
92 = 2 × 2 × 23
सार्व गुणनखंड = 2
∴ HCF = 2
LCM = 2 × 2 × 3 × 5 × 17 × 23 = 23460
अब, जाँच,
दो संख्याओं का गुणनखंड = LCM × HCF
N1 × N2 = LCM × HCF
510 × 92 = 2 × 23460
46920 = 46920
इति सिद्धम |
(iii) 336 and 54
हल:
336 = 2 × 2 × 2 × 2 × 3 × 7
54 = 2 × 3 × 3 × 3
सार्व गुणनखंड = 2 × 3
∴ HCF = 6
LCM = 2 × 2 × 2× 2 × 3 × 3 × 3 × 7 = 3024
जाँच,
दो संख्याओं का गुणनफल = LCM × HCF
N1 × N2 = LCM × HCF
336 × 54 = 6 × 3024
18144 = 18144
इति सिद्धम |
Q3. अभाज्य गुणनखंड विधि द्वारा निम्नलिखित पूर्णांकों के LCM और HCF ज्ञात कीजिए |
(i) 12, 15 and 21
हल:
12 = 2 × 2 × 3
15 = 5 × 3
21 = 7 × 3
सार्व गुणनखंड = 3
HCF = 3
LCM = 3 × 2 × 2 × 5 × 7 = 420
(ii) 17, 23 and 29
हल:
17 = 1 × 17
23 = 1 × 23
29 = 1 × 29
HCF = 1
LCM = 17 × 23 × 29 = 11339
(iii) 8, 9 and 25
हल:
8 = 2 × 2 × 2
9 = 3 × 3
25 = 5 × 5
यहाँ 1 को छोड़कर अन्य कोई सार्व गुणनखंड नहीं है |
∴ HCF = 1
LCM = 2 × 2 × 2 × 3 × 3 × 5 × 5
= 8 × 9 × 25
= 1800
Q4. HCF (306, 657) = 9, दिया है | LCM (306, 657) ज्ञात कीजिए |
हल:
HCF (306, 657) = 9
LCM × HCF = N1 × N2
LCM = 22338
Q5. जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए संख्या 6n अंक 0 पर समाप्त हो सकती है |
हल:
6n का अभाज्य गुणनखंड = (2 × 3 )n
जबकि, कोई प्राकृत संख्या जो शून्य पर समाप्त होती है उसके अभाज्य गुणनखंड (2 × 5 )n के रूप का होता है |
अत:, 6n शून्य पर समाप्त नहीं होगी |
Q6. व्याख्या कीजिए 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्या क्यों है ?
हल :
माना A = 7 × 11 × 13 + 13
= 13 (7 × 11 + 1)
= 13 (77 + 1)
= 13 × 78
अत: यह एक भाज्य संख्या है क्योंकि इसके अभाज्य गुणनखंड में 1 को छोड़कर अन्य दो गुणनखंड हैं |
इसीप्रकार,
माना B = 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5
= 5 (7 × 6 × 4 × 3 × 2 × 1 + 1)
= 5 × (1008 + 1)
= 5 × 1009
अत: यह भी एक भाज्य संख्या है क्योंकि इसके भी अभाज्य गुणनखंड में 1 को छोड़कर अन्य दो गुणनखंड हैं |
Q7. किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारंभ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रांरभिक स्थान पर मिलेंगे?
हल:
एक चक्कर में सोनिया 18 मिनट लेती हैं |
रवि एक चक्कर में 12 लगाता है |
वे दोनों एक ही स्थान पर LCM(18, 12) मिनट के बाद मिलेंगे |
अत:
18 = 2 × 3 × 3
12 = 2 × 2 × 3
HCF = 2 × 3 = 6
= 36 मिनट |